博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Codeforces Round #104 (Div. 1)
阅读量:5150 次
发布时间:2019-06-13

本文共 1793 字,大约阅读时间需要 5 分钟。

A.Lucky Conversion

题意

  • 给定两个长度为 \(N(N \le 10^5)\) 且由4和7构成的 \(a, b\)
  • \(a\) 可以有两种操作:
    1. 交换两个位置的字符;
    2. 改变一个位置的字符。
  • 求最少到操作次数,使得两串相同。

思路

  • 统计需要改变4的个数和改变7的个数。
  • 两个数到最小值表示两两交换使得对应位相同,剩下的只有其中一种,再进行操作2使得对应位相同。
  • 也就是取两者最大值即答案。

B. Lucky Number 2

题意

  • \(cnt(x)\) 表示串 \(x\) 在一个串 \(s\) 中出现到次数。
  • 现给出 \(cnt(4), cnt(7), cnt(47), cnt(74)\),求满足这些条件的最小的串 \(s\),串 \(s\) 仅包含4和7。

思路

  • 47和74只出现在4、7交界处,即如果我们把连续的4和连续的7看成4和7,则最后的串到形式为4、7交替出现,例如……47474……。
  • 显然,47和74的个数差值不会超过1。
  • 那么只要根据47和74的3种差值构造,多余的4插到前面,7则放到后面。

C. Lucky Subsequence

题意

  • 给定 \(N(N \le 10^5)\) 个数 \(a_i(1 \le a_i \le 10^9)\) ,其中仅由4、7构成的数是幸运数。
  • 求出长度为 \(K\) 的子序列,满足序列中没有相同的幸运数的方案数,结果对 \(10^9 + 7\) 取模。
  • 只要序列选取到位置不同,则认为两种方案不同。

思路

  • \(10^9\) 范围内幸运数的个数就1000个左右。
  • \(f(i,j)\) 表示前 \(i\) 种幸运数中取 \(j\) 种放入集合中的权值积之和,转移: \[f(i,j) = f(i - 1, j) + c_i f(i - 1, j - 1) \] \(c_i\) 表示第 \(i\)种幸运数出现的次数。
  • 假设取了 \(j\) 个幸运数,则从非幸运数集合中取 \(K - j\) 个放入集合即可。

D. Lucky Pair

题意

  • 给一个长为 \(N(N \le 10^5)\) 的序列。
  • 其中幸运数的个数不超过 \(10^3\)
  • \([l_1,r_1]\)\([l_2, r_2]\) 的对数,满足 \(l_1 \le r_1 \lt l_2 \le r_2\),且两个区间没有幸运数的交集,就是对于每种幸运数最多只能出现在一个区间中。

思路

  • 可以用总方案数 \(-\) 不合法的方案数。
  • 总方案数 = \(\binom{N}{4} + 2\binom{N}{3} + \binom{N}{2}\)
  • 假设已经得到了左区间 \([l_1, r_1]\) ,那么右半部分 \((r_1, n]\) 会被lucky number分割成若干的区间,使得这些小区间不包含lucky number。
  • 先固定左区间的右端点 \(r_1\),然后从大到小枚举左端点 \(l_1\) ,右半部分 \((r_1, n]\) 区间会发生变化,当且仅当 \(l_1\) 是lucky number并且在 \((l_1, r_1]\) 未出现,所以我们只要枚举lucky number的位置即可。
  • 考虑右半部分新增的分割点,假设为 \(p\)\(pre\)表示 \(p\) 的前一个分割点,\(nxt\)为后一个。那么新增的不合法右区间为包含 \(p\) 的且不包含\(pre,nxt\)的区间。
  • 由于有非lucky number的存在,所以还要考虑左右端点不是lucky number的扩展。

E. Lucky Queries

题意

  • 给一个长为 \(N(N \le 10^6)\) 且由4、7构成的串 \(s\)
  • \(M(M \le 3 \times 10^5)\) 次操作:
    1. switch l r:将区间 \([l, r]\)\(4 \to 7, 7 \to 4\)
    2. count:求串s的最长上升子序列。

思路

  • 将4看成0, 7看成1
  • 线段树维护区间0的个数 \(c_0\), 1的个数 \(c_1\), 最长上升子序列长度 \(lis\), 下降 \(lds\)

转载于:https://www.cnblogs.com/mcginn/p/5855016.html

你可能感兴趣的文章
C语言进阶——const 和 volatile 分析09
查看>>
字符串的查找删除
查看>>
NOI2018垫底记
查看>>
快速切题 poj 1002 487-3279 按规则处理 模拟 难度:0
查看>>
Codeforces Round #277 (Div. 2)
查看>>
一步步学Mybatis-搭建最简单的开发环境-开篇(1)
查看>>
微信小程序图片上传
查看>>
【更新】智能手机批量添加联系人
查看>>
NYOJ-128前缀式计算
查看>>
centos6.7 配置外网端口映射
查看>>
淡定,啊。数据唯一性
查看>>
深入理解 JavaScript 事件循环(一)— event loop
查看>>
Hive(7)-基本查询语句
查看>>
Redis快速入门
查看>>
注意java的对象引用
查看>>
C++ 面向对象 类成员函数this指针
查看>>
inline函数的总结
查看>>
Python字符编码
查看>>
leetcode 49. 字母异位词分组(Group Anagrams)
查看>>
NSPredicate的使用,超级强大
查看>>